

Overview

- * History
- * IARC
- * New Data
- * CARC Re-Evaluation
- * IARC/CARC differences

History

- * 1985 Group C Carcinogen; Possible Human Carcinogen
 - * Male mouse kidney tumors (adenomas only) 0/50 controls; 0/50 low; 1/50 mid and 3/50 high dose
 - No evidence of carcinogenicity in female mice or male/female rats.
- * PWG Evaluation of additional kidney slides of all treated groups
 - * Adenomas: 1/49; 0/50; 0/50; 1/50
 - * Carcinomas: 0/49; 0/50; 1/50; 2/50
 - * Tumors Not Treatment- Related- No trend or pairwise statistical significance; no preneoplastic lesions; lack of multiple tumors;
- * 1986 SAP Evaluation
 - * Group D Chemical; Not Classifiable to Human carcinogenicity
 - * Renal tumors equivocal, mainly adenomas, no statistical significance. Recommended a DCI for repeat mouse and rat studies

History

- * 1991 CPRC Review
- * Group C: Carcinogen; Possible Human Carcinogen
 - * Equivocal (kidney) tumor response in male mice
 - * Lack of statistical significance pairwise
 - * No pre-neoplastic lesions
 - * Magnitude of response poor 3/50 @ very high dose (4945 m/k/d)
 - * No evidence of carcinogenicity in female mice, male or female rats
 - * No mutagenicity/genotoxicity concerns
 - * No SAR concerns

IARC Evaluation - 2015

- * Group 2A- Probable Human Carcinogen (Group 2A)
 - * Limited Evidence in Humans
 - Positive association for Non-Hodgkin Lymphoma
 - * Case-control Canada
 - * Case-control- Sweden
 - * Case- control Sweden (follow-up study)
 - * Case-control U.S.A
 - Sufficient Evidence in Animals
 - Positive trend for renal carcinoma and combined adenoma/carcinoma in male mice in one study
 - Positive trend for hemangiosarcomas in male mice in the second study.
 - Strong evidence for genotoxicity
 - * Glyphosate and glyphosate-formulations
 - * DNA and chromosomal damage in mammals *in vivo* and in humans and animals *in vitro*.

New Data Evaluated in 2015

- * 1991 CPRC Data Set
 - * 1 Mouse and 2 Rat carcinogenicity studies submitted to OPP
 - Mutagenicity studies submitted to OPP
- * IARC Data Set
 - * 28 Epidemiology studies
 - 2 Mouse carcinogenicity studies (1 study submitted to JMPR but not to OPP)
 - * 4 Rat carcinogenicity studies (2 studies submitted to JMPR but not to OPP)
 - * Mutagenicity studies in the published literature
- * 2015 CARC Data Set
 - * 31 Epidemiology studies
 - * 4 Mouse cancer studies (1 more mouse study rejected due to viral infection)
 - * 7 Rat cancer studies (1 more rat study rejected due to lack of purity data)
 - * 54 Mutagenicity studies

Note: 5 Studies cited in Griem et al 2015 review article not evaluated by IARC

http://informahealthcare.com/doi/abs/10.3109/10408444.2014.1003423

CARC Evaluation

- * 2005 Cancer Guidelines: "Not Likely to be Carcinogenic to Humans"
- * Evidence in Humans
 - No association between glyphosate exposure and cancer of: the oral cavity; esophagus, stomach; colon; rectum; colorectum; lung; pancreas; kidney; bladder; prostate; breast; cutaneous melanoma; or soft tissue sarcoma
 - No association between glyphosate exposure and brain cancer (gliomas);
 leukemia oar multiple myeloma
 - Inconclusive for a causal or clear associative relationship between glyphosate exposure and NHL
 - * No association in 5 case-control and 1 prospective cohort studies
 - * Suggestive association in 2 case-control studies in Sweden
 - * Limitations for most of these studies include: small sample size; limited power; no quantitative exposure data; no blood biomarkers (interview by questionnaires); no knowledge of product used (formulations); risk ratios with large CIs; and recall bias as well as missing data.
 - * The literature will continue to be monitored for studies related to glyphosate and risk of NHL.

CARC Evaluation (continued)

* Evidence in Animals

- * No evidence of carcinogenicity in 4 studies with CD-1 mice following dietary administration at doses ranging from 85.0 to 4945 mg/kg/day for up to 2 years
- No evidence of carcinogenicity in 7 studies in Sprague Dawley or Wistar rats following dietary administration at doses ranging from 3.0 to 1500 mg/kg/day for up to 2 years
- * Evidence for Mutagenicity
- * No mutagenic or genotoxic concern in a wide range of *in vivo* and in vitro assays: negative for gene mutation, chromosomal damage, DNA damage and repair

Epidemiology Studies: IARC and CARC

- * <u>IARC:</u> Limited Evidence in Humans based on increased risk for NHL (4 studies)
- * CARC: Epidemiologic studies does not support causal association.
- 1. Case-control Canada: 51 exposed cases/133 controls (McDuffie et al. 2001)

<u>IARC</u>: Positive association only for those with more than 2/days/year exposure.

<u>CARC:</u> Increase not statistically significant (OR=1.20; 95% CI=0.87-1.8) and No adjustment made for exposure from use of other pesticides.

<u>Note</u>: IARC only used the ≥ 2 days data and not the negative association ≤ 2 days exposure

2. <u>Case-Control - Sweden:</u> 8 exposed/8 controls (Hardell *et al.* 2002)

<u>IARC</u>: Excess risk based on pooled analysis of 2 studies [NHL and HCL (a NHL variant)].

CARC: The excess risk (OR= 3.04; 95% CI=1.08 - 8.52) in a univariate analysis declined when study site, vital status, and exposure to other pesticides were taken into a multivariate analysis (OR=1.85; 95% CI=0.55-6.20)

Note: Few exposed cases; individual studies non-significant; large CI.

Epidemiology Studies: IARC and CARC

3. Case-control - U.S.A: 36 exposed/61 controls (De Roos et al. 2003)

IARC: Increase in logistic regression analysis (OR=2.1; 95% CI= 1.1- 4.0)

CARC: Non significant in the hierarchical regression (OR=1.6; 95% CI=0.9-2.8)

Note: IARC used the logistic analysis in their rationale, but not the hierarchical

analysis which is used to adjust for exposure to other pesticides,

4. Case-control - Sweden: 29 cases/18 controls (Eriksson et al. 2008)

IARC: Increase in univariate (OR=2.02; 95% CI=1.10-3.71) and

multivariate analysis (OR=1.51; 95% CI=0.77-2.94)

CARC: Suggestive; statistical significance only in univariate but not in

multivariate

Note: IARC noted the non-significance but included in their rationale.

Lack of dose-response; imprecise risk estimates with wide CI; no consistent pattern; recall bias; multiple exposures; does not support causal association

IARC: Identifies "hazard" according to its "Preamble"

- * The IARC assessment looks at the intrinsic 'hazard' of a chemical as a cancer-causing agent only. Other components of the toxicity of the chemical are not taken into account.
- * IARC reviews only reports/studies published in the open literature.
- * Preamble: "sufficient evidence of carcinogenicity" based on the occurrence of increased tumors (benign, malignant, or combination) in:
 - * 1) two or more species of animals;
 - * 2) two or more independent studies in one species; and/or
 - * 3) an increased incidence of tumors in both sexes of a single species

- * EPA: Weight-of-Evidence Approach (2005 Guidelines):
- * tumors in multiple species, strains, or both sexes;
- * dose-response;
- * progression of lesions from pre-neoplastic to benign to malignant;
- * proportion of malignant tumors;
- * reduced latency of neoplastic lesions;
- * both biological and statistical significance of the findings;
- * use of the background incidence (historical control) data;

Male Mouse Kidney Tumor (MRID No.00251007)

PWG Read: Fisher's Exact & Exact Trend Test						
Tumor Type	0 mg/kg/day	161 mg/kg/day	835 mg/kg/day	4945 mg/kg/day		
Adenomas	1/49 (2%)	0/49 (0%)	0/50 (0%)	1/45 (2%)		
P =	0.4422	1.0000	1.00000	0.7576		
Carcinomas	0/49 (0%)	0/49 (0%)	1/50 (2%)	2/50 (4%)		
P =	0.0635	1.0000	0.5051	0.2525		
Combined	1/49 (2%)	0/49 (0%)	1/50 (2%)	3/50 (6%)		
P =	0.0648	1.0000	0.7576	0.3163		

<u>IARC</u>: Positive trend for carcinoma (P=0.037) and adenoma/carcinoma (P=0.034) - Cochran-Armitage trend test

CARC: Not treatment-related based on:

- ➤ No positive trend or pair-wise significance;
- ➤ No pre-neoplastic lesions;
- ➤ Low magnitude of response 4x the Limit Dose;
- > Incidences within historical control range and

Male Mouse Hemangiosarcomas (MRID No.49631702)

Fisher's Exact Test and Exact Trend Test Results							
Dose (mg/kg/day)	0	100	300	1000			
Hemangiosarcomas	0/47 (0%)	0/46 (0%)	0/50 (0%)	4/45 (9%)			
P =	0.00296**	1.00000	1.00000	0.05332			

<u>IARC</u>: Positive trend for hemangiosarcomas (P=0.001; Cochran-Armitage)

CARC: Not treatment-related based on:

- ➤ Tumors seen only at the limit dose;
- ➤ No pair-wise significance;
- \triangleright Incidences was near or the same as the upper limit (0-8%);
- > Not seen in male mice in the same strain in the other 3 studies;
- Considerable inter-group variability in incidences in female mice;
- Both spontaneous and treatment-related tumors arising from endothelial cells;
- > Appear in both sexes but are generally more common in males; and

Mutagenicity: IARC and CARC

IARC:

There is strong evidence that exposure to glyphosate or glyphosate based formulations is genotoxic.

Data set included:

- * Studies that tested glyphosate-formulated products;
- * Studies where the test material was not well-characterized (i.e., no purity information was provided).
- * Focused on DNA damage as an endpoint (e.g., comet assay);
- * Studies with limitations confounding interpretation or results
- Many negative studies cited by Kier and Kirkland (2013) but were not included in the IARC decision

Mutagenicity: IARC and CARC

CARC:

No concern for mutagenicity or genotoxicity *in vivo* and *in vitro*. Negative for gene mutation, chromosomal damage, DNA damage and repair

- Glyphosate was not mutagenic in bacteria or mammalian cells in vitro
- > Did not induce chromosomal aberrations in vitro.
- Although some studies in the open literature reported positive findings for micronuclei induction in rodents, these findings were not replicated in the majority of the rodent micronucleus assay studies.
- There is no convincing evidence that the DNA damage is a direct effect of glyphosate, but under some conditions may be secondary to cytotoxicity or oxidative damage.

Summary

Epidemiological Studies

- * No association between glyphosate exposure and site-specific cancer
- * Case-control studies on NHL: Does no support a direct causal association
- * Prospective cohort (AHS) study on NHL: No significant increased risk

Experimental Animals

- * No evidence of carcinogenicity in male or female mice in 4 studies
- No evidence of carcinogenicity in male or female in 2 strain of rats in 7 studies

Mutagenicity

* No concern for mutagenicity/genotoxicity in vitro or in vivo

Classification: Not Likely to be Carcinogenic to Humans

Around the World with Glyphosate

- * Australia (2013): Currently, the weight and strength of evidence does not support the conclusion that glyphosate causes cancer in either laboratory animals or humans (APVMA, 07/2013).
- * Canada (2015): No evidence of carcinogenicity in mice and rats (PRVD 2015-XX)
- * **EU Regulation (CLP):** No classification
- * **EFSA (2014):** Glyphosate does not show carcinogenic or mutagenic properties.
- * <u>Germany (2014)</u>: Available data do not show carcinogenic or mutagenic properties of glyphosate.
- * JMPR/WHO (2004): No evidence of carcinogenicity in rats or mice
- * Republic of California: California's Environmental Protection Agency (Cal/EPA) intends to list the herbicide glyphosate the active ingredient in Monsanto's RoundUp as a carcinogenic chemical under the Proposition 6
- * <u>South Africa</u>: Based on current risk assessments, glyphosate poses a minimal risk to users and the general public, provided it is used according to label instructions and safety statements.